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a recursive proof is a proof that enforces the accepting 
computation of the proof system’s own verifier

π



overview: motivation

shrinking proof size

πC
V0VC πR



https://github.com/mir-protocol/plonky2/blob/main/plonky2/examples/bench_recursion.rs#L183

   // Start with a dummy proof of specified size

   let inner = dummy_proof::<F, C, D>(config, log2_inner_size)?;

   let (_, _, cd) = &inner;

∏dummy Vdummy
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https://github.com/mir-protocol/plonky2/blob/main/plonky2/examples/bench_recursion.rs#L183


   // Start with a dummy proof of specified size

   let inner = dummy_proof::<F, C, D>(config, log2_inner_size)?;

   let (_, _, cd) = &inner;

   // Recursively verify the proof

   let middle = recursive_proof::<F, C, C, D>(&inner, config, None)?;

   let (_, _, cd) = &middle;

∏dummy

∏0

Vdummy

V0

Initial proof degree 16384 = 2^14

Degree before blinding & padding: 4028

Degree after blinding & padding: 4096
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   // Start with a dummy proof of specified size

   let inner = dummy_proof::<F, C, D>(config, log2_inner_size)?;

   let (_, _, cd) = &inner;

   // Recursively verify the proof

   let middle = recursive_proof::<F, C, C, D>(&inner, config, None)?;

   let (_, _, cd) = &middle;

   // Add a second layer of recursion to shrink the proof size further

   let outer = recursive_proof::<F, C, C, D>(&middle, config, None)?;

   let (proof, vd, cd) = &outer;

∏dummy

∏0

∏1

Vdummy

V0

V1

Single recursion proof degree 4096 = 2^12

Degree before blinding & padding: 3849

Degree after blinding & padding: 4096

Initial proof degree 16384 = 2^14

Degree before blinding & padding: 4028

Degree after blinding & padding: 4096

overview: motivation

shrinking proof size

https://github.com/mir-protocol/plonky2/blob/main/plonky2/examples/bench_recursion.rs#L183

https://github.com/mir-protocol/plonky2/blob/main/plonky2/examples/bench_recursion.rs#L183


∏dummy

∏0

∏1

Vdummy

V0

V1

Double recursion proof degree 4096 = 2^12

Proof length: 127184 bytes

0.2511s to compress proof

Compressed proof length: 115708 bytes

Single recursion proof degree 4096 = 2^12

Degree before blinding & padding: 3849

Degree after blinding & padding: 4096

Initial proof degree 16384 = 2^14

Degree before blinding & padding: 4028

Degree after blinding & padding: 4096

overview: motivation

shrinking proof size

https://github.com/mir-protocol/plonky2/blob/main/plonky2/examples/bench_recursion.rs#L183

https://github.com/mir-protocol/plonky2/blob/main/plonky2/examples/bench_recursion.rs#L183
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fast prover small proof / fast verifier

"wide" proof ✔ ❌

wide circuit πwide

fast prover

large proof
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wide circuit πwide
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verifier 
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applications:

- verify chain of N blocks with a single proof (e.g. Mina Protocol   )
- verify N steps of program in virtual machine (e.g. RISC Zero   )
- verify inference of an N-layer neural network (e.g. Zator 🐊)
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overview: motivation

incrementally verifiable computation

https://minaprotocol.com/
https://www.risczero.com/
https://github.com/lyronctk/zator


a blockchain in which each block can be verified in constant time 
regardless of the number of prior blocks in the history

tx0 tx1 tx2 tx3 tx4

σ(tx0) σ(tx1) σ(tx2) σ(tx3) σ(tx4)
full node

overview: motivation

e.g. succinct blockchain
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a blockchain in which each block can be verified in constant time 
regardless of the number of prior blocks in the history

overview: motivation

e.g. succinct blockchain

tx0 tx1 tx2 tx3 tx4

σ(tx0) σ(tx1) σ(tx2) σ(tx3) σ(tx4)
full node

light client

π0

"σ(tx0) is a valid 
state transition"

π1

"σ(tx1) is a valid 
state transition, 
and π0 is correct"

π2 π3 π4

"σ(tx2) is a valid 
state transition, 
and π1 is correct"

"σ(tx3) is a valid 
state transition, 
and π2 is correct"

the state transitions 
up to this block are 

correct



verifiable delay function [BBBF18]: a sequential computation that is 
slow to compute but efficient to verify

f f f f
x f(x) f2(x) f3(x) f4(x)

"f4(input) = output"

evaluator

πf4 prover

overview: motivation

e.g. parallelising the VDF prover



verifiable delay function [BBBF18]: a sequential computation that is 
slow to compute but efficient to verify

f f f f
x f(x) f2(x) f3(x) f4(x)

πf πf πf πf "f(input) = output"

πr πr

πr

"the previous two proofs were correct"

"the previous two proofs were correct"

evaluator

overview: motivation

e.g. parallelising the VDF prover



overview: motivation

proof-carrying data

image from https://people.eecs.berkeley.edu/~alexch/docs/CT10.pdf 
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overview: motivation

proof-carrying data

e.g. MapReduce [CTV15]
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overview: constructionsoverview: constructions

full recursion
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full recursion: small-field FRI
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full recursion: small-field FRI

overview: constructions
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full recursion: pairings over a cycle of elliptic curves [BCTV14]
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full recursion: pairings over a cycle of elliptic curves [BCTV14]
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e.g. MNT4/6 curves

overview: constructions

high concrete cost of pairing check!
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shrinking 
proof size

IVC / PCD

full recursion
accumulation 

scheme / folding

● plonky3

● Miden

● RISC Zero

● Mina

● Nova 

● plonky2 gnark verifier 

● halo2 FRI gadget

● Polygon Hermez

comparison: implementations

https://github.com/Plonky3/Plonky3
https://github.com/0xPolygonMiden/miden-vm/blob/main/stdlib/tests/crypto/stark/verifier_recursive/mod.rs
https://github.com/risc0/risc0/tree/main/risc0/zkvm/src/recursion
https://github.com/o1-labs/proof-systems/blob/master/kimchi/src/prover.rs#L145-L1269
https://github.com/microsoft/Nova
https://github.com/succinctlabs/gnark-plonky2-verifier
https://github.com/maxgillett/halo2-fri-gadget
https://github.com/0xPolygonHermez/zkevm-prover/blob/main/src/starkpil/starkRecursiveF/starkRecursiveF.cpp#L144-L211
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taken from Nico Mohnblatt’s presentation

protocol relation accumulator “reduce” “combine”

halo2-IPA PlonKish IPA polycommit 
opening proofs

P: vanishing argument, multiopen 
argument, IPA

P: random linear combination 
and opening proof

V: produce challenges, check multiopen 
argument, check logarithmic part of IPA

V: random linear combination 
and partial opening proof

BCLMS21 R1CS Hadamard product 
vector commitment 

claims

P: commit to matrix-vector product P: commit to error term

V: none V: add commitments w/ error

Nova R1CS committed relaxed 
R1CS

P: commit to witness P: commit to error term

V: none V: add commitments w/ error

Sangria PlonK committed relaxed 
PlonK

P: commit to witness P: commit to error term

V: none V: add commitments w/ error

comparison: recursion threshold
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protocol relation accumulator “reduce” “combine”

Nova R1CS committed relaxed 
R1CS

P: commit to witness P: commit to error term

V: none V: add commitments w/ error

HyperNova CCS linearised committed 
CCS

P: commit to witness P: random linear combination

P and V: run the sumcheck protocol V: random linear combination

ProtoStar any relation 
w/ algebraic 
verifier

commitments to all 
messages and 

compressed verifier 
check

P: commit to each message P: compute the compressed 
cross terms

V: produce random challenges V: add commitments and 
compressed cross terms

comparison: recursion threshold
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folding schemes

need additively homomorphic commitments!
typically uses cryptographic group (DLOG 
hardness)

comparison: cryptographic assumptions

FRI-based
full recursion

assumes existence of one-way function 
for non-interactivity (BCS transform)
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data (PCD)

non-uniform IVC 

(NIVC)
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accumulation 

scheme 

incrementally 
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computation (IVC)
atomic accumulation 

split accumulation 

/ folding scheme 

[Val08]
[KS22]

[BCMS20]

[BCLMS21]

[BGH19]

[Chi10]

[BCTV14]

proving step is not zero-knowledge in split accumulation

comparison: zero-knowledgeness of recursive step



proof-carrying 

data (PCD)

non-uniform IVC 

(NIVC)

full recursion 

accumulation 

scheme 

incrementally 

verifiable 

computation (IVC)
atomic accumulation 

split accumulation 

/ folding scheme 

[Val08]
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proving step is not zero-knowledge in split accumulation; this is fine for IVC, where a single witness 
is split into incremental chunks; but less suitable for PCD, where each prover has its own witness 
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comparison: zero-knowledgeness of recursive step

we could blind the witness to achieve zero-knowledge folding;
but this will still be bandwidth-intensive



1. overview
a) motivation

b) constructions

2. comparison
a) recursion threshold

b) zero-knowledgeness

c) security and cryptographic assumptions

3. focus: CycleFold

agenda
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