
recursive proof composition

ABCDE ZK Hacker Camp
2 Sep 2023

agenda

1. overview
a) motivation

b) constructions

2. comparison
a) recursion threshold

b) zero-knowledgeness

c) security and cryptographic assumptions

3. focus: CycleFold

1. overview
a) motivation

b) constructions

2. comparison
a) recursion threshold

b) zero-knowledgeness

c) security and cryptographic assumptions

3. focus: CycleFold

agenda

V0V

P

a recursive proof is a proof that enforces the accepting
computation of the proof system’s own verifier

π

overview: motivation

shrinking proof size

πC
V0VC πR

https://github.com/mir-protocol/plonky2/blob/main/plonky2/examples/bench_recursion.rs#L183

 // Start with a dummy proof of specified size

 let inner = dummy_proof::<F, C, D>(config, log2_inner_size)?;

 let (_, _, cd) = &inner;

∏dummy Vdummy

overview: motivation

shrinking proof size

https://github.com/mir-protocol/plonky2/blob/main/plonky2/examples/bench_recursion.rs#L183

 // Start with a dummy proof of specified size

 let inner = dummy_proof::<F, C, D>(config, log2_inner_size)?;

 let (_, _, cd) = &inner;

 // Recursively verify the proof

 let middle = recursive_proof::<F, C, C, D>(&inner, config, None)?;

 let (_, _, cd) = &middle;

∏dummy

∏0

Vdummy

V0

Initial proof degree 16384 = 2^14

Degree before blinding & padding: 4028

Degree after blinding & padding: 4096

overview: motivation

shrinking proof size

https://github.com/mir-protocol/plonky2/blob/main/plonky2/examples/bench_recursion.rs#L183

https://github.com/mir-protocol/plonky2/blob/main/plonky2/examples/bench_recursion.rs#L183

 // Start with a dummy proof of specified size

 let inner = dummy_proof::<F, C, D>(config, log2_inner_size)?;

 let (_, _, cd) = &inner;

 // Recursively verify the proof

 let middle = recursive_proof::<F, C, C, D>(&inner, config, None)?;

 let (_, _, cd) = &middle;

 // Add a second layer of recursion to shrink the proof size further

 let outer = recursive_proof::<F, C, C, D>(&middle, config, None)?;

 let (proof, vd, cd) = &outer;

∏dummy

∏0

∏1

Vdummy

V0

V1

Single recursion proof degree 4096 = 2^12

Degree before blinding & padding: 3849

Degree after blinding & padding: 4096

Initial proof degree 16384 = 2^14

Degree before blinding & padding: 4028

Degree after blinding & padding: 4096

overview: motivation

shrinking proof size

https://github.com/mir-protocol/plonky2/blob/main/plonky2/examples/bench_recursion.rs#L183

https://github.com/mir-protocol/plonky2/blob/main/plonky2/examples/bench_recursion.rs#L183

∏dummy

∏0

∏1

Vdummy

V0

V1

Double recursion proof degree 4096 = 2^12

Proof length: 127184 bytes

0.2511s to compress proof

Compressed proof length: 115708 bytes

Single recursion proof degree 4096 = 2^12

Degree before blinding & padding: 3849

Degree after blinding & padding: 4096

Initial proof degree 16384 = 2^14

Degree before blinding & padding: 4028

Degree after blinding & padding: 4096

overview: motivation

shrinking proof size

https://github.com/mir-protocol/plonky2/blob/main/plonky2/examples/bench_recursion.rs#L183

https://github.com/mir-protocol/plonky2/blob/main/plonky2/examples/bench_recursion.rs#L183

overview: motivation

shrinking proof size

fast prover small proof / fast verifier

"wide" proof ✔ ❌

wide circuit πwide

fast prover

large proof

overview: motivation

shrinking proof size

wide circuit πwide

fast prover

large proof

fast prover small proof / fast verifier

"wide" proof ✔ ❌
"narrow" proof ❌ ✔

narrow
circuit πnarrow

slow prover

tiny proof

overview: motivation

shrinking proof size

wide circuit πwide

fast prover

large proof

fast prover small proof / fast verifier

"wide" proof ✔ ❌
"narrow" proof ❌ ✔

verifier
in narrow
circuit

πnarrow

slow prover

tiny proof

overview: motivation

shrinking proof size

fast prover small proof / fast verifier

STARK ✔ ❌

STARK prover
circuit

πSTAR
K

fast prover

large proof

overview: motivation

shrinking proof size

fast prover small proof / fast verifier

STARK ✔ ❌
Groth16 ❌ ✔

STARK prover
circuit

πSTAR
K

fast prover

large proof

Groth16 prover
circuit πGroth16

slow prover

tiny proof

overview: motivation

shrinking proof size

fast prover small proof / fast verifier

STARK ✔ ❌
Groth16 ❌ ✔

STARK prover
circuit

πSTAR
K

fast prover

large proof

STARK verifier
in Groth16

prover circuit
πGroth16

slow prover

tiny proof

overview: motivation

shrinking proof size

STARK prover
circuit

πSTAR
K

STARK verifier
in Groth16

prover circuit
πGroth16

slow prover

tiny proof

STARK prover
circuit

πSTAR
K

overview: motivation

shrinking proof size

STARK prover
circuit

πSTAR
K

STARK verifier
in Groth16

prover circuit
πGroth16

slow prover

tiny proof

STARK prover
circuit

πSTAR
K

overview: motivation

shrinking proof size

F’ F’ F’F(3)z
0

π
3
,z

3

Π
0
, z

0

break large circuit into N repetitions of smaller circuit: reduces prover space complexity

Π
1
, z

1
Π
2
, z

2
Π
3
, z

3

overview: motivation

incrementally verifiable computation

applications:

- verify chain of N blocks with a single proof (e.g. Mina Protocol)
- verify N steps of program in virtual machine (e.g. RISC Zero)
- verify inference of an N-layer neural network (e.g. Zator 🐊)

F’ F’ F’ … F’
Π
0
, z

0
Π
1
, z

1
Π
2
, z

2
Π
N
, z

N

overview: motivation

incrementally verifiable computation

https://minaprotocol.com/
https://www.risczero.com/
https://github.com/lyronctk/zator

a blockchain in which each block can be verified in constant time
regardless of the number of prior blocks in the history

tx0 tx1 tx2 tx3 tx4

σ(tx0) σ(tx1) σ(tx2) σ(tx3) σ(tx4)
full node

overview: motivation

e.g. succinct blockchain

a blockchain in which each block can be verified in constant time
regardless of the number of prior blocks in the history

overview: motivation

e.g. succinct blockchain

tx0 tx1 tx2 tx3 tx4

σ(tx0) σ(tx1) σ(tx2) σ(tx3) σ(tx4)
full node

light client

assume correct

a blockchain in which each block can be verified in constant time
regardless of the number of prior blocks in the history

overview: motivation

e.g. succinct blockchain

tx0 tx1 tx2 tx3 tx4

σ(tx0) σ(tx1) σ(tx2) σ(tx3) σ(tx4)
full node

light client

π0

"σ(tx0) is a valid
state transition"

π1

"σ(tx1) is a valid
state transition,
and π0 is correct"

π2 π3 π4

"σ(tx2) is a valid
state transition,
and π1 is correct"

"σ(tx3) is a valid
state transition,
and π2 is correct"

the state transitions
up to this block are

correct

verifiable delay function [BBBF18]: a sequential computation that is
slow to compute but efficient to verify

f f f f
x f(x) f2(x) f3(x) f4(x)

"f4(input) = output"

evaluator

πf4 prover

overview: motivation

e.g. parallelising the VDF prover

verifiable delay function [BBBF18]: a sequential computation that is
slow to compute but efficient to verify

f f f f
x f(x) f2(x) f3(x) f4(x)

πf πf πf πf "f(input) = output"

πr πr

πr

"the previous two proofs were correct"

"the previous two proofs were correct"

evaluator

overview: motivation

e.g. parallelising the VDF prover

overview: motivation

proof-carrying data

image from https://people.eecs.berkeley.edu/~alexch/docs/CT10.pdf

https://people.eecs.berkeley.edu/~alexch/docs/CT10.pdf

overview: motivation

proof-carrying data

e.g. MapReduce [CTV15]

overview: constructions

proof-carrying

data (PCD)

non-uniform IVC

(NIVC)

full recursion

accumulation

scheme

incrementally

verifiable

computation (IVC)
atomic accumulation

split accumulation

/ folding scheme

[Val08]
[KS22]

[BCMS20]

[BCLMS21]

[BGH19]

[Chi10]

overview: constructions

[BCTV14]

overview: constructionsoverview: constructions

proof-carrying

data (PCD)

non-uniform IVC

(NIVC)

full recursion

accumulation

scheme

incrementally

verifiable

computation (IVC)
atomic accumulation

split accumulation

/ folding scheme

[Val08]
[KS22]

[BCMS20]

[BCLMS21]

[BGH19]

[Chi10]

[BCTV14]

overview: constructionsoverview: constructions

full recursion

zi zi+1

πi πi+1

F

wi

V(πi) = 1

zi+1 = F(zi; wi)

IVC prover

SNARK.Verify

overview: constructionsoverview: constructions

full recursion

zi zi+1

πi πi+1

F

R

SNARK.Prove

wi

V(πi) = 1

zi+1 = F(zi; wi) πi+1

IVC prover

SNARK.Verify

overview: constructionsoverview: constructions

full recursion

zi zi+1

πi πi+1

F

R

SNARK.Prove

F

SNARK.Prove

R

wi wi+1

V(πi) = 1

zi+1 = F(zi; wi) πi+1 V(πi+1) = 1

zi+2 = F(zi+1; wi+1)

IVC prover IVC prover

SNARK.Verify SNARK.Verify

overview: constructionsoverview: constructions

full recursion

zi zi+1

πi πi+1

F

R

SNARK.Prove

F

SNARK.Prove

R

zi+2

πi+2

wi wi+1

V(πi) = 1

zi+1 = F(zi; wi) πi+1 V(πi+1) = 1

zi+2 = F(zi+1; wi+1) πi+2

IVC prover IVC prover

SNARK.Verify SNARK.Verify

overview: constructionsoverview: constructions

full recursion

zi zi+1

πi πi+1

F

R

SNARK.Prove

F

SNARK.Prove

R

zi+2

πi+2

wi wi+1

V(πi) = 1

zi+1 = F(zi; wi) πi+1 V(πi+1) = 1

zi+2 = F(zi+1; wi+1) πi+2

IVC prover IVC prover

IVC verifier

zn

πn

z0

0/1

SNARK.Verify SNARK.Verify

full recursion: small-field FRI

overview: constructions

image from https://www.risczero.com/news/continuations

https://www.risczero.com/news/continuations

full recursion: small-field FRI

overview: constructions

image from https://www.risczero.com/news/continuations

https://www.risczero.com/news/continuations

full recursion: pairings over a cycle of elliptic curves [BCTV14]

zi

πq

F

V

R

SNARK.Prove

V

SNARK.Prove

F

R

zi+1

πr

wi
𝔽q 𝔽r

wi

e.g. MNT4/6 curves

overview: constructions

full recursion: pairings over a cycle of elliptic curves [BCTV14]

zi

πq

F

V

R

SNARK.Prove

V

SNARK.Prove

F

R

zi+1

πr

wi
𝔽q 𝔽r

wi

e.g. MNT4/6 curves

overview: constructions

high concrete cost of pairing check!

overview: constructionsoverview: constructions

proof-carrying

data (PCD)

non-uniform IVC

(NIVC)

full recursion

accumulation

scheme

incrementally

verifiable

computation (IVC)
atomic accumulation

split accumulation

/ folding scheme

[Val08]
[KS22]

[BCMS20]

[BCLMS21]

[BGH19]

[Chi10]

[BCTV14]

overview: constructionsoverview: constructions

atomic accumulation

F
zi zi+1

wi

overview: constructionsoverview: constructions

atomic accumulation

F
zi zi+1

IVC prover

πi πi+1

acc
i

acci
+1

P
accumulation prover

wi

overview: constructionsoverview: constructions

atomic accumulation

F
zi zi+1

IVC prover

πi πi+1

P

V
accumulation

verifier

wi

acc
i

acci
+1

overview: constructionsoverview: constructions

atomic accumulation

F
zi zi+1

IVC prover

πi πi+1

P

V

R

SNARK.Provewi

acc
i

acci
+1

overview: constructionsoverview: constructions

atomic accumulation

IVC verifier

F
zi zi+1

IVC prover

πi πi+1

P

V

R

SNARK.Provewi

acc
i

acci
+1

overview: constructionsoverview: constructions

atomic accumulation

F
zi zi+1

IVC prover

πi πi+1

P

V

R

SNARK.Provewi

IVC verifier

D

zi+1

SNARK.Verify

acc
i

acci
+1

overview: constructionsoverview: constructions

proof-carrying

data (PCD)

non-uniform IVC

(NIVC)

full recursion

accumulation

scheme

incrementally

verifiable

computation (IVC)
atomic accumulation

split accumulation

/ folding scheme

[Val08]
[KS22]

[BCMS20]

[BCLMS21]

[BGH19]

[Chi10]

[BCTV14]

overview: constructionsoverview: constructionsoverview: constructions

split accumulation / folding

F
zi zi+1

wi

overview: constructionsoverview: constructionsoverview: constructions

split accumulation / folding

F
zi zi+1

IVC prover

πi

ai

ai+1P

wi

overview: constructionsoverview: constructionsoverview: constructions

split accumulation / folding

F
zi zi+1

IVC prover

πi

ai

P

πx,i

πw,i

ax,i

aw,i

wi

ai+1

overview: constructionsoverview: constructionsoverview: constructions

split accumulation / folding

F
zi zi+1

IVC prover

πi

ai

ai+1P

V

R

πx,i

πw,i

ax,i

aw,i

wi

overview: constructionsoverview: constructionsoverview: constructions

split accumulation / folding

F
zi zi+1

IVC prover

πi

πi+1

ai

ai+1P

V

R

SNARK.Prove

IVC verifier

πx,i

πw,i

ax,i

aw,i

wi

overview: constructionsoverview: constructionsoverview: constructions

split accumulation / folding

F
zi zi+1

IVC prover

πi

πi+1

ai

ai+1P

V

R

SNARK.Prove

IVC verifier

D

NARK.Verify

πx,i

πw,i

ax,i

aw,i

wi

z
i F

j
z
i+1

w
i

w
i+1

F
j
(w

i
,z

i
) =

z
i+1

overview: constructionsoverview: constructionsoverview: constructions

non-uniform IVC (NIVC)

overview: constructionsoverview: constructionsoverview: constructions

non-uniform IVC (NIVC)

pc
i

z
i

F'
j

F
j

verifier

z
i+1

w
i

w
i+1

pc
i+1

verifier:

- φ(w
i
,z

i
, pc

i
) = pc

i+1

overview: constructionsoverview: constructionsoverview: constructions

non-uniform IVC (NIVC)

π
i

pc
i

z
i

F'
j

F
j

verifier

z
i+1

w
i

w
i+1

π
i+

1

pc
i+1

verifier:

- φ(w
i
,z

i
, pc

i
) = pc

i+1

overview: constructionsoverview: constructionsoverview: constructions

non-uniform IVC (NIVC)

π
i

u
i

pc
i

z
i

F'
j

F
j

verifier

z
i+1

w
i

w
i+1

π
i+

1

pc
i+1

u
i
 claims the correctness of the ith step

verifier:

- φ(w
i
,z

i
, pc

i
) = pc

i+1

overview: constructionsoverview: constructionsoverview: constructions

non-uniform IVC (NIVC)

π
i

u
i

pc
i

z
i

F'
j

F
j

verifier

z
i+1

w
i

w
i+1

π
i+

1

pc
i+1

verifier:

- φ(w
i
,z

i
, pc

i
) = pc

i+1

u
i
 claims the correctness of the ith step

overview: constructionsoverview: constructionsoverview: constructions

non-uniform IVC (NIVC)

π
i

u
i

pc
i

z
i

F'
j

F
j

verifier

z
i+1

w
i

w
i+1

π
i+

1

pc
i+1

u
i
 claims the correctness of the ith step

verifier:

- φ(w
i
,z

i
, pc

i
) = pc

i+1

overview: constructionsoverview: constructionsoverview: constructions

non-uniform IVC (NIVC)

π
i

u
i

pc
i

z
i

F'
j

F
j

verifier

z
i+1

w
i

w
i+1

π
i+

1

u
i+1

pc
i+1

u
i
 claims the correctness of the ith step

verifier:

- φ(w
i
,z

i
, pc

i
) = pc

i+1

overview: constructionsoverview: constructionsoverview: constructions

non-uniform IVC (NIVC)

π
i

. .
.

u
i

U
i
[0] U

i
[ℓ]

pc
i

z
i

F'
j

F
j

verifier

z
i+1

w
i

w
i+1

U
i
[j] . .

.

π
i+

1

. .
.

u
i+1

U
i+1
[0] U

i+1
[ℓ
]

U
i+1
[j] . .

.

pc
i+1

u
i
 claims the correctness of the ith step

U
i
[j] attests to all prior i -1 iterations of F'

j

verifier:

- φ(w
i
,z

i
, pc

i
) = pc

i+1

overview: constructionsoverview: constructionsoverview: constructions

non-uniform IVC (NIVC)

π
i

. .
.

u
i

U
i
[0] U

i
[ℓ]

pc
i

z
i

F'
j

F
j

verifier

z
i+1

w
i

w
i+1

U
i
[j] . .

.

π
i+

1

. .
.

u
i+1

U
i+1
[0] U

i+1
[ℓ
]

U
i+1
[j] . .

.

pc
i+1

verifier:

- φ(w
i
,z

i
, pc

i
) = pc

i+1

- check that U
i
, pc

i
are

contained in
public output of u

i

- fold u
i
 into U

i
[pc

i
]

u
i
 claims the correctness of the ith step

U
i
[j] attests to all prior i -1 iterations of F'

j

1. overview
a) motivation

b) constructions

2. comparison
a) recursion threshold

b) zero-knowledgeness

c) security and cryptographic assumptions

3. focus: CycleFold

agenda

shrinking
proof size

IVC / PCD

full recursion
accumulation

scheme / folding

● plonky3

● Miden

● RISC Zero

● Mina

● Nova

● plonky2 gnark verifier

● halo2 FRI gadget

● Polygon Hermez

comparison: implementations

https://github.com/Plonky3/Plonky3
https://github.com/0xPolygonMiden/miden-vm/blob/main/stdlib/tests/crypto/stark/verifier_recursive/mod.rs
https://github.com/risc0/risc0/tree/main/risc0/zkvm/src/recursion
https://github.com/o1-labs/proof-systems/blob/master/kimchi/src/prover.rs#L145-L1269
https://github.com/microsoft/Nova
https://github.com/succinctlabs/gnark-plonky2-verifier
https://github.com/maxgillett/halo2-fri-gadget
https://github.com/0xPolygonHermez/zkevm-prover/blob/main/src/starkpil/starkRecursiveF/starkRecursiveF.cpp#L144-L211

comparison: recursion threshold

comparison: recursion threshold

taken from Nico Mohnblatt’s presentation

protocol relation accumulator “reduce” “combine”

halo2-IPA PlonKish IPA polycommit
opening proofs

P: vanishing argument, multiopen
argument, IPA

P: random linear combination
and opening proof

V: produce challenges, check multiopen
argument, check logarithmic part of IPA

V: random linear combination
and partial opening proof

BCLMS21 R1CS Hadamard product
vector commitment

claims

P: commit to matrix-vector product P: commit to error term

V: none V: add commitments w/ error

Nova R1CS committed relaxed
R1CS

P: commit to witness P: commit to error term

V: none V: add commitments w/ error

Sangria PlonK committed relaxed
PlonK

P: commit to witness P: commit to error term

V: none V: add commitments w/ error

comparison: recursion threshold

taken from Nico Mohnblatt’s presentation

protocol relation accumulator “reduce” “combine”

Nova R1CS committed relaxed
R1CS

P: commit to witness P: commit to error term

V: none V: add commitments w/ error

HyperNova CCS linearised committed
CCS

P: commit to witness P: random linear combination

P and V: run the sumcheck protocol V: random linear combination

ProtoStar any relation
w/ algebraic
verifier

commitments to all
messages and

compressed verifier
check

P: commit to each message P: compute the compressed
cross terms

V: produce random challenges V: add commitments and
compressed cross terms

comparison: recursion threshold

comparison: recursion threshold

from https://a16zcrypto.com/posts/article/introducing-lasso-and-jolt

https://a16zcrypto.com/posts/article/introducing-lasso-and-jolt

comparison: recursion threshold

from https://a16zcrypto.com/posts/article/introducing-lasso-and-jolt

https://a16zcrypto.com/posts/article/introducing-lasso-and-jolt

comparison: recursion threshold

from https://a16zcrypto.com/posts/article/introducing-lasso-and-jolt

https://a16zcrypto.com/posts/article/introducing-lasso-and-jolt

comparison: recursion threshold

from https://a16zcrypto.com/posts/article/introducing-lasso-and-jolt

https://a16zcrypto.com/posts/article/introducing-lasso-and-jolt

taken from Nico Mohnblatt’s presentation

protocol relation accumulator “reduce” “combine”

Nova R1CS committed relaxed
R1CS

P: commit to witness P: commit to error term

V: none V: add commitments w/ error

HyperNova CCS linearised committed
CCS

P: commit to witness P: random linear combination

P and V: run the sumcheck protocol V: random linear combination

ProtoStar any relation
w/ algebraic
verifier

commitments to all
messages and

compressed verifier
check

P: commit to each message P: compute the compressed
cross terms

V: produce random challenges V: add commitments and
compressed cross terms

need additively homomorphic commitments!

comparison: cryptographic assumptions

taken from Nico Mohnblatt’s presentation

protocol relation accumulator “reduce” “combine”

Nova R1CS committed relaxed
R1CS

P: commit to witness P: commit to error term

V: none V: add commitments w/ error

HyperNova CCS linearised committed
CCS

P: commit to witness P: random linear combination

P and V: run the sumcheck protocol V: random linear combination

ProtoStar any relation
w/ algebraic
verifier

commitments to all
messages and

compressed verifier
check

P: commit to each message P: compute the compressed
cross terms

V: produce random challenges V: add commitments and
compressed cross terms

need additively homomorphic commitments!
typically uses cryptographic group

comparison: cryptographic assumptions

folding schemes

need additively homomorphic commitments!
typically uses cryptographic group (DLOG
hardness)

comparison: cryptographic assumptions

FRI-based
full recursion

assumes existence of one-way function
for non-interactivity (BCS transform)

proof-carrying

data (PCD)

non-uniform IVC

(NIVC)

full recursion

accumulation

scheme

incrementally

verifiable

computation (IVC)
atomic accumulation

split accumulation

/ folding scheme

[Val08]
[KS22]

[BCMS20]

[BCLMS21]

[BGH19]

[Chi10]

[BCTV14]

proving step is not zero-knowledge in split accumulation

comparison: zero-knowledgeness of recursive step

proof-carrying

data (PCD)

non-uniform IVC

(NIVC)

full recursion

accumulation

scheme

incrementally

verifiable

computation (IVC)
atomic accumulation

split accumulation

/ folding scheme

[Val08]
[KS22]

[BCMS20]

[BCLMS21]

[BGH19]

[Chi10]

[BCTV14]

proving step is not zero-knowledge in split accumulation; this is fine for IVC, where a single witness
is split into incremental chunks

comparison: zero-knowledgeness of recursive step

proof-carrying

data (PCD)

non-uniform IVC

(NIVC)

full recursion

accumulation

scheme

incrementally

verifiable

computation (IVC)
atomic accumulation

split accumulation

/ folding scheme

[Val08]
[KS22]

[BCMS20]

[BCLMS21]

[BGH19]

[Chi10]

[BCTV14]

proving step is not zero-knowledge in split accumulation; this is fine for IVC, where a single witness
is split into incremental chunks; but less suitable for PCD, where each prover has its own witness

comparison: zero-knowledgeness of recursive step

comparison: zero-knowledgeness of recursive step

we could blind the witness to achieve zero-knowledge folding;
but this will still be bandwidth-intensive

1. overview
a) motivation

b) constructions

2. comparison
a) recursion threshold

b) zero-knowledgeness

c) security and cryptographic assumptions

3. focus: CycleFold

agenda

CycleFold

U
i-1

(1)

fold

U
i-2

(1)

u
i-2

(1)

CycleFold

U
i
(1)

fold

U
i-1

(1)

fold

U
i-2

(1)

u
i
(1)u

i-1
(1)u

i-2
(1)

CycleFold

U
i
(1)

fold

U
i-1

(1)

fold

U
i-2

(1)

these values are in the wrong field!

u
i
(1)u

i-1
(1)u

i-2
(1)

CycleFold

U
i
(1)

fold

U
i-1

(1)

fold

U
i-2

(1)

defer to EC circuit
on second curve

EC(1)

u
i
(1)u

i-1
(1)u

i-2
(1)

CycleFold

U
i
(1)

fold

U
i-1

(1)

fold

U
i-2

(1)

track EC circuit
in native fold

EC

EC(1)

fold
EC

uEC
i-1

(2)

UEC
i-2

(2)

u
i
(1)u

i-1
(1)u

i-2
(1)

CycleFold

U
i
(1)

fold
u
i
(1)

U
i-1

(1)

fold
u
i-1

(1)

U
i-2

(1)

u
i-2

(1)

EC(1)

fold
EC

uEC
i-1

(2)

UEC
i-2

(2)

EC(1)

uEC
i
(2)

UEC
i-1

(2)
fold

EC

UEC
i+1

(2)

