# recursive proof composition

ABCDE ZK Hacker Camp 2 Sep 2023

# agenda

#### 1. overview

- a) motivation
- b) constructions

#### 2. comparison

- a) recursion threshold
- b) zero-knowledgeness
- c) security and cryptographic assumptions

#### 3. focus: CycleFold

# agenda

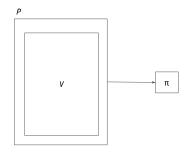
#### 1. overview

- a) motivation
- b) constructions

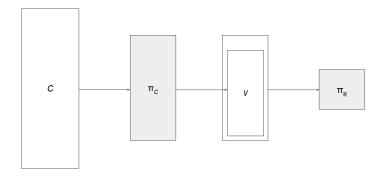
#### 2. comparison

- a) recursion threshold
- b) zero-knowledgeness
- c) security and cryptographic assumptions

#### 3. focus: CycleFold



a **recursive proof** is a proof that enforces the accepting computation of the **proof system's own verifier** 



shrinking proof size

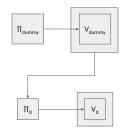
// Start with a dummy proof of specified size
let inner = dummy\_proof::<F, C, D>(config, log2\_inner\_size)?;
let (\_, \_, cd) = &inner;



#### shrinking proof size

Initial proof degree 16384 = 2^14
Degree before blinding & padding: 4028
Degree after blinding & padding: 4096

// Recursively verify the proof
let middle = recursive\_proof::<F, C, C, D>(&inner, config, None)?;
let ( , , cd) = &middle;

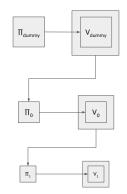


#### shrinking proof size

Initial proof degree 16384 = 2^14
Degree before blinding & padding: 4028
Degree after blinding & padding: 4096

Single recursion proof degree 4096 = 2^12 Degree before blinding & padding: 3849 Degree after blinding & padding: 4096

// Add a second layer of recursion to shrink the proof size further let outer = recursive\_proof::<F, C, C, D>(&middle, config, None)?; let (proof, vd, cd) = &outer;

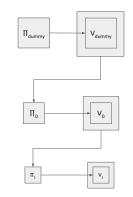


#### shrinking proof size

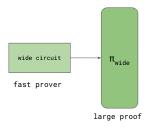
Initial proof degree 16384 = 2^14
Degree before blinding & padding: 4028
Degree after blinding & padding: 4096

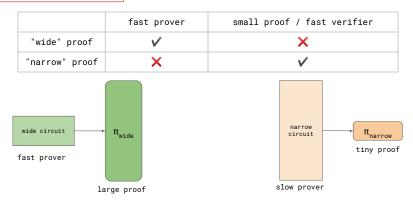
Single recursion proof degree 4096 = 2^12 Degree before blinding & padding: 3849 Degree after blinding & padding: 4096

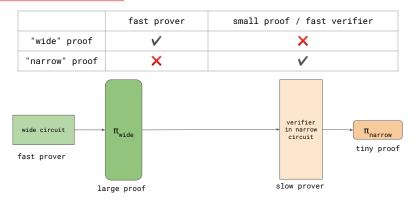
Double recursion proof degree 4096 = 2^12 Proof length: 127184 bytes 0.2511s to compress proof Compressed proof length: 115708 bytes



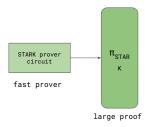
|              | fast prover  | small proof / fast verifier |
|--------------|--------------|-----------------------------|
| "wide" proof | $\checkmark$ | ×                           |

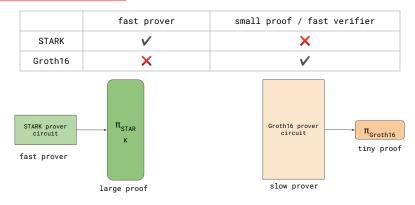


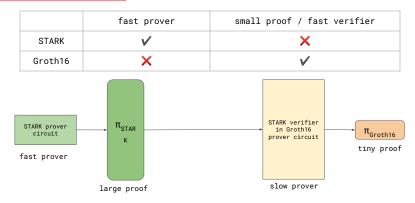


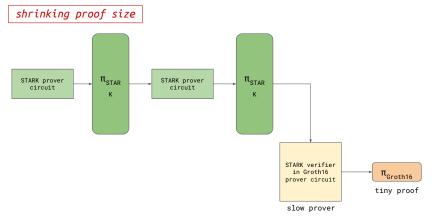


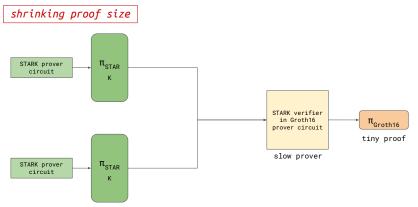
|       | fast prover  | small proof / fast verifier |
|-------|--------------|-----------------------------|
| STARK | $\checkmark$ | ×                           |





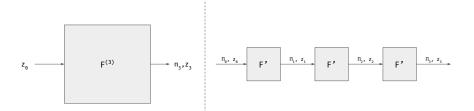






incrementally verifiable computation

break large circuit into N repetitions of smaller circuit: reduces prover space complexity



incrementally verifiable computation

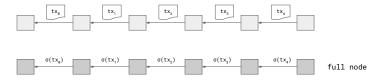


applications:

- verify chain of N blocks with a single proof (e.g. <u>Mina Protocol</u> (0))
- verify N steps of program in virtual machine (e.g. <u>RISC Zero</u> 😿)
- verify inference of an N-layer neural network (e.g. Zator 🐊)

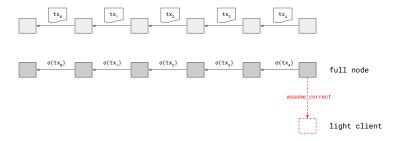
e.g. succinct blockchain

a blockchain in which each block can be verified in **constant time** regardless of the number of prior blocks in the history



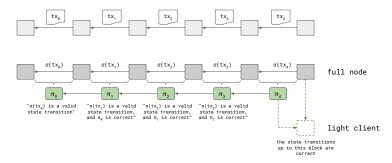
e.g. succinct blockchain

a blockchain in which each block can be verified in **constant time** regardless of the number of prior blocks in the history



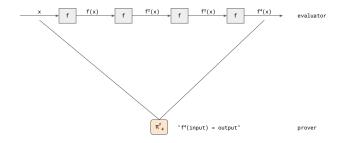
e.g. succinct blockchain

a blockchain in which each block can be verified in **constant time** regardless of the number of prior blocks in the history



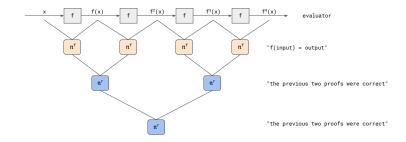
e.g. parallelising the VDF prover

**verifiable delay function** [BBBF18]: a sequential computation that is slow to compute but efficient to verify



e.g. parallelising the VDF prover

**verifiable delay function** [BBBF18]: a sequential computation that is slow to compute but efficient to verify



proof-carrying data

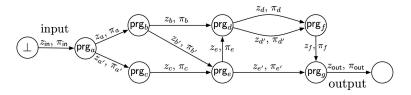
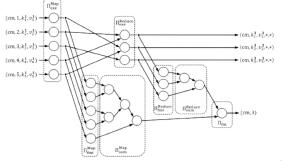


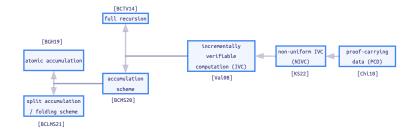
Figure 5: Example of an *augmented* distributed computation transcript. Programs are denoted by prg's, data by z's, and proof strings by  $\pi$ 's. The corresponding (non-augmented) distributed computation transcript is with the proof strings omitted.

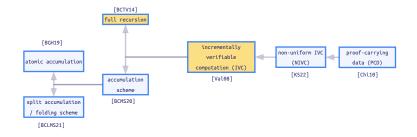
image from <u>https://people.eecs.berkeley.edu/~alexch/docs/CT10.pdf</u>

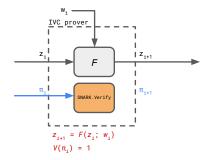
proof-carrying data

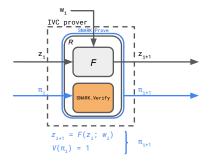


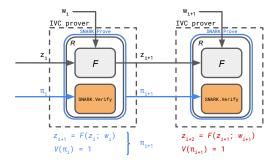
e.g. MapReduce [CTV15]

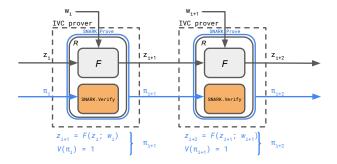


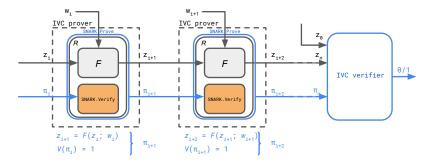




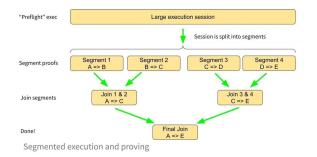




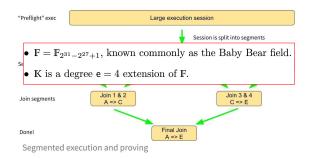




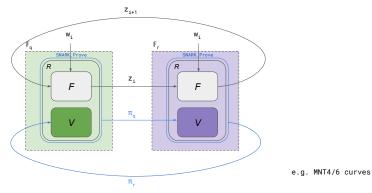
#### full recursion: small-field FRI



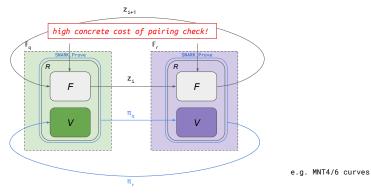
full recursion: small-field FRI

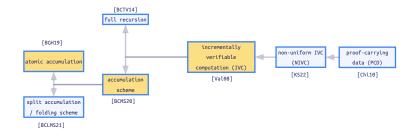


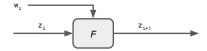
full recursion: pairings over a cycle of elliptic curves [BCTV14]

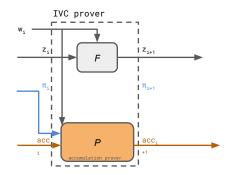


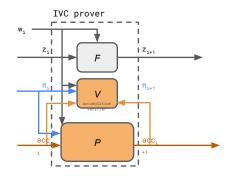
full recursion: pairings over a cycle of elliptic curves [BCTV14]

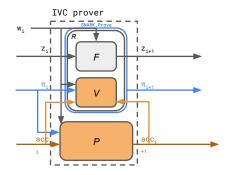


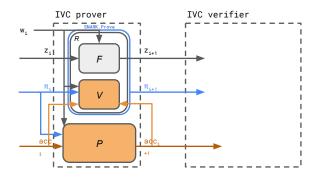


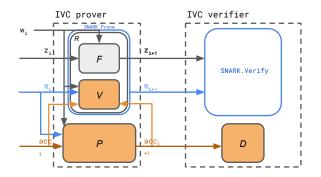


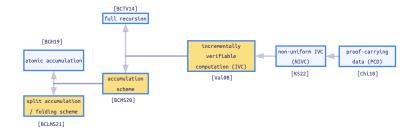


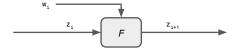


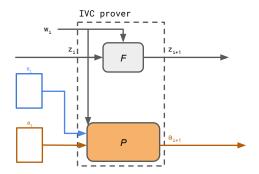


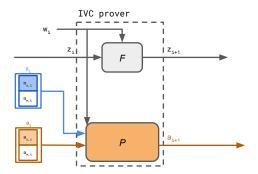


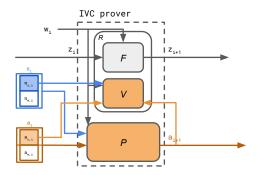


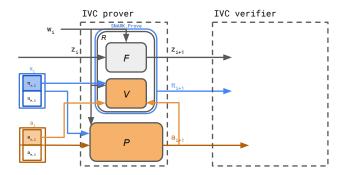


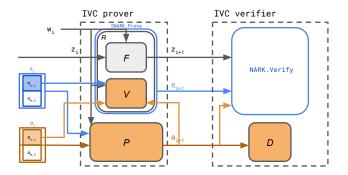


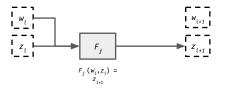








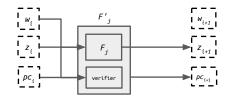




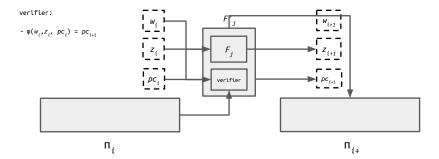
non-uniform IVC (NIVC)

verifier:

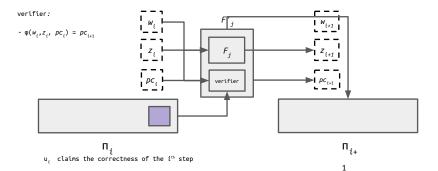
$$- \phi(w_i, z_i, pc_i) = pc_{i+1}$$

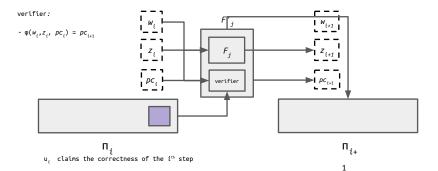


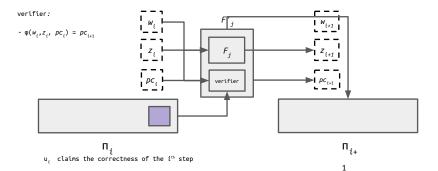
non-uniform IVC (NIVC)

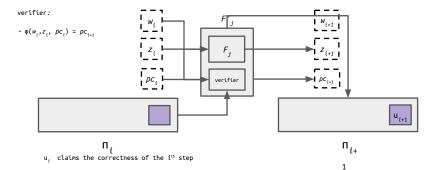


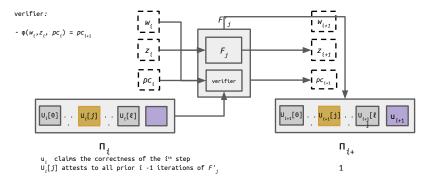
1

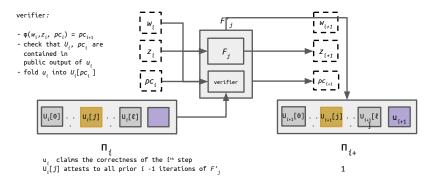












# agenda

#### 1. overview

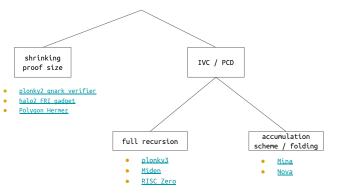
- a) motivation
- b) constructions

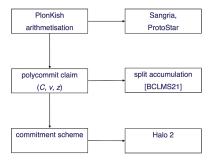
#### 2. comparison

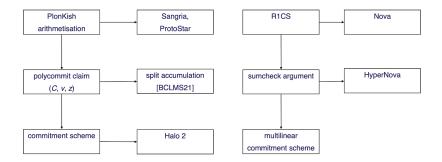
- a) recursion threshold
- b) zero-knowledgeness
- c) security and cryptographic assumptions

#### 3. focus: CycleFold

#### comparison: *implementations*







| protocol  | relation | accumulator                                     | "reduce"                                                                          | "combine"                                                 |
|-----------|----------|-------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------|
| halo2-IPA | PlonKish | IPA polycommit<br>opening proofs                | P: vanishing argument, multiopen argument, IPA                                    | P: random linear combination<br>and opening proof         |
|           |          |                                                 | V: produce challenges, check multiopen<br>argument, check logarithmic part of IPA | V: random linear combination<br>and partial opening proof |
| BCLMS21   | R1CS     | Hadamard product<br>vector commitment<br>claims | P: commit to matrix-vector product                                                | P: commit to error term                                   |
|           |          |                                                 | V: none                                                                           | V: add commitments w/ error                               |
| Nova      | R1CS     | committed relaxed<br>R1CS                       | P: commit to witness                                                              | P: commit to error term                                   |
|           |          |                                                 | V: none                                                                           | V: add commitments w/ error                               |
| Sangria   | PlonK    | committed relaxed<br>PlonK                      | P: commit to witness                                                              | P: commit to error term                                   |
|           |          |                                                 | V: none                                                                           | V: add commitments w/ error                               |

| protocol  | relation                                 | accumulator                                                        | "reduce"                           | "combine"                                        |
|-----------|------------------------------------------|--------------------------------------------------------------------|------------------------------------|--------------------------------------------------|
| Nova      | R1CS                                     | committed relaxed<br>R1CS                                          | P: commit to witness               | P: commit to error term                          |
|           |                                          |                                                                    | V: none                            | V: add commitments w/ error                      |
| HyperNova | ccs                                      | linearised committed<br>CCS                                        | P: commit to witness               | P: random linear combination                     |
|           |                                          |                                                                    | P and V: run the sumcheck protocol | V: random linear combination                     |
| ProtoStar | any relation<br>w/ algebraic<br>verifier | commitments to all<br>messages and<br>compressed verifier<br>check | P: commit to each message          | P: compute the compressed<br>cross terms         |
|           |                                          |                                                                    | V: produce random challenges       | V: add commitments and<br>compressed cross terms |

The reality is that some SNARKs (such as Lasso and JoIt) exhibit <u>economies of scale</u>(arther than diseconomies of scale as in currently deployed SNARks). This means that the larger the statement being proven, the *smaller* the prover overhead relative to direct witness checking (i.e., the work required to evaluate the circuit on the witness with no guarantee of correctness). At a technical level, economies of scale come from two places.

The reality is that some SNARKs (such as Lasso and Jolt) exhibit <u>becommiss of scale</u> (rather than diseconomies of scale as in currently deployed SNARKs). This means that the larger the statement being proven, the *smaller* the prover overhead relative to direct witness checking (i.e., the work required to evaluate the circuit on the witness with no guarantee of correctness). At a technical level, economies of scale come from two places.

 The Pippenger speedup for n-sized MSMs: a log(n) factor improvement over the naïve algorithm. The bigger n is, the bigger the improvement.

The reality is that some SNARKs (such as Lasso and Jolt) exhibit <u>becommise of scale</u> (arther than diseconomies of scale as in currently deployed SNARKs). This means that the larger the statement being proven, the *smaller* the prover overhead relative to direct witness checking (*L*a, the work required to evaluate the circuit on the witness with no guarantee of correctness). At a technical level, economies of scale come from two places.

- The Pippenger speedup for n-sized MSMs: a log(n) factor improvement over the naïve algorithm. The bigger n is, the bigger the improvement.
- In lookup arguments such as Lasso, the prover pays a "one-time" cost that depends on the size of the lookup table, but is independent of the number of values that are looked up. The one-time prover cost is amortized over all lookups into the table. Bigger pieces means more lookups, which means better amortization.

The reality is that some SNARKs (such as Lasso and Jolt) exhibit <u>becommiss of scale</u> (rather than diseconomies of scale as in currently deployed SNARKs). This means that the larger the statement being proven, the *smaller* the prover overhead relative to direct witness checking (i.e., the work required to evaluate the circuit on the witness with no guarantee of correctness). At a technical level, economies of scale come from two places.

- The Pippenger speedup for n-sized MSMs: a log(n) factor improvement over the naïve algorithm. The bigger n is, the bigger the improvement.
- In lookup arguments such as Lasso, the prover pays a "one-time" cost that depends on the size of the lookup table, but is independent of the number of values that are looked up. The one-time prover cost is amortized over all lookups into the table. Bigger pieces means more lookups, which means better amortization.

The prevailing approach to handling big circuits today is to break things into the smallest pieces possible. The main constraint on the size of each piece is that they can't be so small that recursively aggregating proofs becomes a prover bottleneck.

Lasso and Jolt suggest an essentially opposite approach. One should use SNARKs that exhibit economies of scale. Then break large computations into the largest pieces possible, and recurse on the results The main constraint on the size of each piece is prover space, which grows as the pieces get bigger.

## comparison: cryptographic assumptions

| protocol  | relation                                 | accumulator                                                        | "reduce"                           | "combine"                                        |
|-----------|------------------------------------------|--------------------------------------------------------------------|------------------------------------|--------------------------------------------------|
| Nova      | R1CS                                     | committed relaxed<br>R1CS                                          | P: commit to witness               | P: commit to error term                          |
|           |                                          |                                                                    | V: none                            | V: add commitments w/ error                      |
| HyperNova | ccs                                      | linearised committed<br>CCS                                        | P: commit to witness               | P: random linear combination                     |
|           |                                          |                                                                    | P and V: run the sumcheck protocol | V: random linear combination                     |
| ProtoStar | any relation<br>w/ algebraic<br>verifier | commitments to all<br>messages and<br>compressed verifier<br>check | P: commit to each message          | <pre>P: compute the compressed cross terms</pre> |
|           |                                          |                                                                    | V: produce random challenges       | V: add commitments and<br>compressed cross terms |

need additively homomorphic commitments!

### comparison: cryptographic assumptions

| protocol  | relation                                 | accumulator                                                        | "reduce"                           | "combine"                                        |
|-----------|------------------------------------------|--------------------------------------------------------------------|------------------------------------|--------------------------------------------------|
| Nova      | R1CS                                     | committed relaxed<br>R1CS                                          | P: commit to witness               | P: commit to error term                          |
|           |                                          |                                                                    | V: none                            | V: add commitments w/ error                      |
| HyperNova | ccs                                      | linearised committed<br>CCS                                        | P: commit to witness               | P: random linear combination                     |
|           |                                          |                                                                    | P and V: run the sumcheck protocol | V: random linear combination                     |
| ProtoStar | any relation<br>w/ algebraic<br>verifier | commitments to all<br>messages and<br>compressed verifier<br>check | P: commit to each message          | <pre>P: compute the compressed cross terms</pre> |
|           |                                          |                                                                    | V: produce random challenges       | V: add commitments and<br>compressed cross terms |

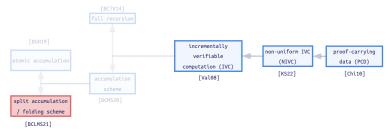
need additively homomorphic commitments! typically uses **cryptographic group** 

taken from Nico Mohnblatt's presentation

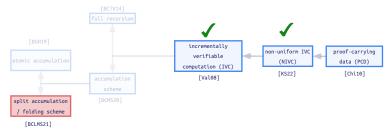




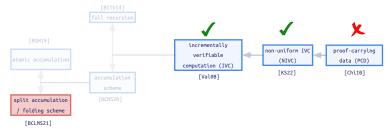
assumes existence of one-way function for non-interactivity (BCS transform) need additively homomorphic commitments!
typically uses cryptographic group (DLOG
hardness)



proving step is not zero-knowledge in split accumulation



proving step is not zero-knowledge in split accumulation; this is fine for IVC, where a single witness is split into incremental chunks



proving step is not zero-knowledge in split accumulation; this is fine for IVC, where a single witness is split into incremental chunks; but less suitable for PCD, where each prover has its own witness



# agenda

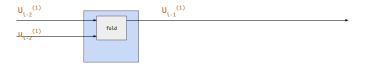
#### 1. overview

- a) motivation
- b) constructions

#### 2. comparison

- a) recursion threshold
- b) zero-knowledgeness
- security and cryptographic assumptions

### 3. focus: CycleFold









these values are in the wrong field!

