ezkKl

Making Smart Contracts Smarter

plp 1nstall ezkl

Jason Morton & Joshia Seam | Zkonduit | ABCDE Aug 12

Problem

Contracts

Problem

Limited to Elementary/Primary
School Maths

EVM Is restrictive

Out of Gas Errors
Contract Size Limit Reached
Stack Too Deep

Solution

/K + Smart Contracts

Space of things

you can compute

Catch:

Writing ZK circuits
Is difficult

Insight: neural nets and zk circuits are
computational graphs

|

Add

AN
v
OO0

.onnx from neural network
library

ezkl maps

Halo?2 circuit

Solution

Train AlI/ML models

pDon’t write Halo2 circuits

Solution

YA UNELGCE

/K + Smart Contracts
EZ

What can you build now? Some Hackathon Ideas

€ Cointelegraph £ @Cointelegraph - Jul 19
Replying to @Cointelegraph and @zkdayofficial

o B ette r D e F i Va u Its @ And the lucky winner is.... @networknoya - Al-driven Omnichain

Yield Aggregator. % ¥ Congratulations on becoming a bit richer
today and best of luck on your exciting blockchain journey. #
#zkDayParis

 Example: noya.al

* On-chain credit scoring
e Generative NFTs
e Autonomous Worlds

* On-chain games

 Example: cryptoidol.tech

* |dentity/Account Abstraction (Build your own worldcoin)

* Apps that can see and use off-chain data

https://noya.ai
http://cryptoidol.tech

https://cryptoidol.tech demo

Think you can be the next Crypto Idol ?
O

http://cryptoidol.tech

Gas costs are small on L2

(?) Transaction Hash: 0xdf398daaf0f9756a8ddb631b925951351176c8a65b39841a3e8b5c5e2834a223 (L)
() Status:
Block: 45191493 984033 Block Confirmations

(2) Timestamp: ® 24 days 21 hrs ago (Jul-17-2023 03:09:58 PM +UTC)

Contract Oxc23c7cad2c36c689613a234892c158d645ef88cb

(?) Value: 0 MATIC ($0.00)

(?) Transaction Fee: 0.054294749305855905 MATIC ($0.04)

(?) Gas Price: 0.000000099898526595 MATIC (99.898526595 Gwei)

?) MATIC Price: $0.78 / MATIC

Diving Deeper
Into ezkl concepts

How we use Digital Signatures Today

* Program them

e (Complex
Constructions

 (Chatty Protocols

* Limited Security
Models and Privacy
Options

What if we could
program in
Digital Signatures

ZKPs are “programmable signatures”

Any program, any input you like with similar security and privacy

Signature

Algorithm

ZKPs are “programmable signatures”

Any program, any input you like with similar security and privacy

Private Inputs -m»
Public Inputs Public Parts

Any Program

ZKML (Zero Knowledge Machine Learning)

Mostly Inference For Now

Private Inputs

Al/ML Model Chain

Inference Verifies

Public Parts

Public Inputs

Why build w/ZKML now?

ZKPs are getting
easler, faster, and practical

go fast.

folow d Fs
oloOwW dreems
N v

Floating-point operations per proof in ezkl

1 100 10,000 1,000,000 100,000,000

ﬁ

10 1,000 100,000 10,000,000 +00%:099,00

Flops (add, multiply) per proof in ezkl

1 100 10,000 1,000,000 100,000,000

ﬁ

10 1,000 100,000 10,000,000 5-00%:099,00

1 Year

—

Proofs per chain transaction

1 100 10,000 1,000,000 100,000,000

ﬁ

10 1,000 100,000 10,000,000 5-00%:099,00

Rollups™

Zupass

Proofs per chain transaction

1 100 10,000 1,000,000 100,000,000

ﬁ

10 1,000 100,000 10,000,000 J000:000,00

Rollups Dev tooling, efficiency

Zupass '

3 years?

Compute per chain transaction

100,000,000
What will
vou build? s
Proofs/tx
ZUpaSS 10,000 times faster today (12 Aug),
R()"ups compared to last September
1 okl —

1 100 Flops/pf 100,000,000

Rollups

Privacy Protocols Hermez

zkSync

® Aztec

&% STARKWARE

/K of Today

Autonomous
Games? Worlds?

Al DAOs? | |
Onchain Waifus?

Onchain physics simulators?

/K of Tomorrow

How can | build
on ezkl?

EZKL engine

e \Want to run some stats or an Al model on-chain but it doesn’t
fit (or you want the model or inputs to be secret)

e Say a Python function result = forward(input)
e ezkl turns forward into
* A prover that takes input and gives you (input, result, <hex>)

e A smart contract that checks <hex> to determine if it Is true
that result = forward(input)

* This lets you do arbitrary computation “on chain”

class MyModel(nn.Module):
def __init__ (self):
super(MyModel, self).__init_ ()

nn.Conv2d(in_channels=1, out_channels=2, kernel _size=5, stride=2)
nn.Conv2d(in_channels=2, out_channels=3, kernel _size=5, stride=2)

self.convl
self.conv2

self.relu = nn.ReLU()

Py self.d1l = nn.Linear(48, 48)
QS a?p self.d2 = nn.Linear(48, 10)
eveloper
. F) , def forward(self, x):
define your # 32x1x28x28 => 32x32x26Xx26

x = self.convl(x)
forward e
. . x = self.conv2(x)
funCtIOn N x = self.relu(x)
F)S/tr1()r1 # flatten => 32 x (32%26%26)
X = X.flatten(start_dim = 1)

32 x (32%26x%x26) => 32x128
x = self.d1l(x)
x = self.relu(x)

logits => 32x10
logits = self.d2(x)

return logits

Questions about result = forward(input)

* How much gas to verify?
» about 400k
 How fast to prove?
e \Varies; stats and small ML takes seconds.
e Can parts be kept secret? Yes:
* Prover’s <hex> shows it knows input and/or forward
e such that result = forward(input)

» optionally without revealing input and/or forward to anyone

Export model to onnx (Boilerplate for Torch)

Flips the neural net into inference mode
circuit.eval()

Export the model

torch.onnx.export(circuit, # model being run
X, # model input (or a tuple for multiple inputs)
model_path, # where to save the model (can be a file or file-like object)
export_params=Irue, # store the trained parameter weights inside the model file
opset_version=10, # the ONNX version to export the model to

do_constant_folding=True, # whether to execute constant folding for optimization
input_names = ['input'], # the model's input names
output_names = ['output'], # the model's output names
dynamic_axes={"'input' : {0 : 'batch_size'}, # variable [length axes
'‘output' : {0 : 'batch_size'}})

data_array = ((x).detach().numpy()).reshape([-1]).tolist()

data = dict(input_data = [data_array])

Serialize data into file:
json.dump(data, open(data_path, 'w'))

Export model to onnx (Boilerplate for Keras)

spec = tf.TensorSpec([1, 28, 28, 1], tf.float32, name='input_0')

tf2onnx.convert.from_keras(model, input_signature=[spec], inputs_as_nchw=['input_©0'], opset=12, output_path=model_path)
data_array = x.reshape([-1]).tolist()

[data_array])

data = dict(input_data

Serialize data into file:
json.dump(data, open(data_path, 'w'))

Questions about result = forward(input)

* Can the secret parts be committed to, attested, or signed?

* Yes, prover can prove it knows input and/or forward such that
result = forward(input) and

» that they hash to something it reveals and/or signs, or
someone else signed

* Can you run the proof for me on a server somewhere?

* Sure, happy to

Questions about result = forward(input)

e Can an input be:

» User-uploaded? Yes

* A database query? Yes

 Current on-chain state? Yes

 Historical on-chain state? Soon

https://cryptoidol.tech
https://github.com/zkonduit/ezkl/blob/main/examples/notebooks/mean_postgres.ipynb
https://github.com/zkonduit/ezkl/blob/main/examples/notebooks/data_attest.ipynb

Now make a setup

» Generate some artifacts that can be proved against, including
* Ingredients the prover needs
e Solidity verifier (maybe deploy it)

e Tell your client / provers where to find them

* Wire your smart contract into the verifier contract

* check proof is true, then change state

Boilerplate 2: settings, compile, gen verifier

res ezkl.gen settings(model path, settings path, py run args=run args)
assert res True

res await ezkl.calibrate settings(val data, model path, settings path, "resources")
assert res True

print("verified")

res ezkl.setup | res ezkl.create evm verifier(
model path, EEE
vk path, srs_Path,
Pk_path, sol code_path,
srs path, — —P '

settings path, abi_path,

Boilerplate 2: settings, compile, gen verifier

res ezkl.gen settings(model path, settings path, py run args=run args)
assert res True

res await ezkl.calibrate settings(val data, model path, settings path, "resources")
assert res True

print("verified")

res ezkl.setup res ezkl.create evm verifier(
model path, ::;f:::ﬂ
;i_g::g: settings path,
S r; _path , Deploy this, call Sol_code_path ’
: from your contract abi path,
settings_path,

A~ @ oxa..1047 v

Using ezkiljs,
prove from your app

Initiate Proof Get Proof

Proving is done in two steps Initiate Proof and Get Proof

Artifact ID

Select Input File
Choose File no file selected

Upload your input JSON file

Initiate Proof

For More Examples Checkout ezkl/examples on Github

GitHub
https://github.com/zkonduit/ezkl

To ask questions join our Discord or Telegram

o

Discord Telegram
https://discord.gg/HrgSTAY2AS https://t.me/+QRzaRvTPIthlYWMXx

https://discord.gg/HrgSTAy2AS
https://t.me/+QRzaRvTPIthlYWMx

ezkl hub waitlist

Typeform

https://mmycojs5vy74.typeform.com/to/Z2aikKUt

https://mmycoj5vy74.typeform.com/to/Z2aikKUt

