ABCDE ZK Hacker Camp Jul 29, 2023
Lecture 2 — Axiom: The ZK Coprocessor for Ethereum

Instructor: Yi Sun Scribes: Leo Fang

1 Overview

This lecture was given by Dr. Yi Sun, an assistant professor at the University of Chicago and the
founder of Axiom. He first addressed the issue of smart contracts being unable to query historical
data efficiently, which also limits data-rich applications on the blockchain. He then introduced
the features and architecture of Axiom and explained the steps to use Axiom from a developer’s
perspective. Finally, he discussed the ZK technologies behind Axiom, especially proof recursion
and aggregation.

2 Painful Data Tradeoffs

Smart contracts nowadays face difficulties in efficiently accessing historical data, such as transaction
and state information. For example, when using Opensea to search for a Pudgy Penguins NFT,
you can’t view all historical price and owners of the NFT. This limitation is not a flaw in design,
but rather a necessity to maintain decentralization. If smart contracts could easily access the entire
history of Ethereum, all archive nodes would need to be full nodes.

Developers then confront painful tradeoffs related to data: Fither pay more or reduce security. You
can store more data in state which leads to higher cost; you can also use trusted oracles based on
certain assumptions. Scaling on-chain data access today is caught in a dilemma.

3 What Does Axiom Work

Axiom provides a solution to accessing on-chain history in a more efficient manner by utilizing
cryptography independent of consensus mechanisms. Native access to history within EVM can
be excessively costly due to the need for obtaining millions of intermediate block headers and
constructing merkle proofs.

To address this challenge, Axiom introduces the practicality of historic data access through ZK
techniques, leveraging the scalability and composability offered by ZK. The approach involves
caching the entire history using Merkle Mountain Range up until the Ethereum genesis block,
and performing computations using custom ZK circuits. Besides, Axiom uses parallized ZKP to
aggregating historical block headers which can drastically reduce data size.

The workflow for utilizing Axiom involves reading and verifying computations, followed by the proof
generation. Importantly, every result obtained through Axiom maintains cryptographic security

Lecture 2 Axiom: The ZK Coprocessor for Ethereum

equivalent to Ethereum. Furthermore, computations can be performed without the limitations
imposed by the blockchain’s VM.

[axi]

4 Axiom for Developers

In this section, Prof. Sun introduced Axiom’s SDK, providing a comprehensive overview of its
functionalities, including installation, setup, query building, query submission, proof generation,
and utilizing data within your smart contract. For more detailed information, please refer to the
Axiom documentation.

This workflow enables developers to create a variety of data-rich dApps. In terms of Identity and
Governance, possibilities include the development of autonomous airdrops and on-chain loyalty
systems. Additionally, trustless oracles, such as Historic Uniswap LP share pricing and NFT
transacted floor prices, can be implemented. Furthermore, it is possible to establish an on-chain
Reputation system while safeguarding privacy, such as the Proof of Whale (proving ownership
of at least 5 NFTs from a specific collection and having burned at least 100 ETH in gas).

Build Query Submit Query Wait for Proof Parse Proof Validate Proof
(Typescript SDK) (ethers.js) (Typescript SDK) (Solidity)

Figure 1: Axiom Workflow

5 ZKPs behind Axiom

In this section, we will delve into the ZKP primitives utilized in Axiom, focusing on three key parts:
parsing RLP serialization, Merkle-Patricia trie inclusion, and proof aggregation.

5.1 Parsing RLP Serialization

All data in Ethereum is serialized using Recursive Length Prefix(RLP), which is a method
for serializing nested byte arrays. Each RLP-serialized data consists of a prefix byte and optional
length bytes that precede the actual data. These bytes indicate the length of the subsequent field.

Next, we employ Random Linear Combination(RLC) to arithmetize these arrays with variable
lengths. Upon committing to arrays ali] and b[i], we randomly sample a point r and define:

RLC(ali],r) := (len(a), a[k]r* + a[k — 1]r*~1 + ... + a[0])

We then verify if RLC(ali],r) = RLC(b[i],r). If this condition holds, it confirms that a[i] = b[d].

ABCDE ZK Hacker Camp Page 2 of 4

https://docs.axiom.xyz/developers/axiom-for-developers

5.2 Merkle-Patricia Trie Inclusion Lecture 2 Axiom: The ZK Coprocessor for Ethereum

5.2 Merkle-Patricia Trie Inclusion

Merkle Patricia Trie (MPT) is a commonly used data structure in Ethereum for efficient stor-
age and retrieval of large-scale key-value data. It is a data structure based on a Trie, with the
incorporation of Merkle Tree concepts to enable data integrity verification.

The key feature of the MPT is its construction of a tree-like structure by encoding keys as prefixes.
Fach node in the tree represents a prefix of a key. In the MPT, each node stores a data item
encoded in RLP.

The concept of Merkle Trees is applied to each node in the MPT to ensure data integrity. Each node
includes a hash value computed from its child nodes. By recursively calculating the hash values of
nodes, data tampering can be detected. Here we will use Keccak hash, which is computationally
expensive in our ZKP construction.

5.3 Proof Aggregation

To reduce the proof size, we employ aggregation by combining the block header and MPT proofs.
We mainly use non-native elliptic curve arithmetic and MSM to build this proof aggregation. Given
proofs my,mo, ..., T, We construct a recursive proof as follows:

Ti=m ANTo N... \NTp

The proof system construction is based on halo2 with KZG backend (PSE fork) with modular
setup, which is illustrated in the diagram below:

f Keccak hash
Basic gadgets h
2_
with easy AP alo2-base from zKEVM

Big integer and
elliptic curve halo2-ecc axiom-eth
arithmetic

Keccak, RLP, MPT,
and Ethereum reads

Recursive and
EVM verifier snark-verifier
from PSE

Figure 2: How does Axiom Build the Proof System?

You can learn more about the code implementations in this repository.

6 Vision

Nowadays, Axiom has already achieved several milestones, including trustlessly reading historical
block headers, accounts, account storage, transactions, and receipts, and then computing via custom
ZK circuits.

ABCDE ZK Hacker Camp Page 3 of 4

https://github.com/axiom-crypto

REFERENCES Lecture 2 Axiom: The ZK Coprocessor for Ethereum

However, Scaling Data-rich Applications with ZK technologies is still on the road. Dr.Sun identified
a potential optimal implementation path as follows:

e Trustless reads to all historic on-chain data. (including the beacon chain)

e View function simulation via zkEVM proofs. (we need type-1 zkEVM, with archive node
running in ZK)

e Arbitrary compute via ZK-native VM.

Looking ahead, with advancements in technologies like Axiom, accessing and utilizing data on
Ethereum will become more seamless. This opens up exciting possibilities for the development
of data-rich applications, including machine learning models, recommender systems, and various
other innovative solutions.

References

[axi] Axiom Documentation. https://docs.axiom.xyz/. August 11, 2023.

ABCDE ZK Hacker Camp Page 4 of 4

	Overview
	Painful Data Tradeoffs
	What Does Axiom Work
	Axiom for Developers
	ZKPs behind Axiom
	Parsing RLP Serialization
	Merkle-Patricia Trie Inclusion
	Proof Aggregation

	Vision

